RED5 Round Mini Volcano Lamp - Miniature Novelty Bubble Desk Light

£9.975
FREE Shipping

RED5 Round Mini Volcano Lamp - Miniature Novelty Bubble Desk Light

RED5 Round Mini Volcano Lamp - Miniature Novelty Bubble Desk Light

RRP: £19.95
Price: £9.975
£9.975 FREE Shipping

In stock

We accept the following payment methods

Description

To this day, quartz remains one of our best-selling stone worktops products. It is nearly infallible, defined by near-indestructible properties, easy cleaning & maintenance, but above all exceptional beauty. Quartz is modern, stylish, sleek and perfectly slots into any environment, as though it naturally belongs there. Sarkki S, Niemelä J, Tinch R, van den Hove S, Watt A, Young J (2013) Balancing credibility, relevance and legitimacy: a critical assessment of trade-offs in science–policy interfaces. Sci Public Policy 41(2):194–206 Can enhance legitimacy by providing transparent access to the processes of information production to multiple stakeholders. Lee E, Su Jung C, Lee MK (2014) The potential role of boundary organizations in the climate regime. Environ Sci Pol 36:24–36

The research that Cash et al. ( 2003) built on had already established that coordinated efforts of the kind invoked by Papale ( 2017) necessarily occur at the hybrid, dynamic interface between scientific and other communities, where the strategic demarcation of scientific and other tasks involves inevitable crossover (Guston 2001; Jasanoff 2011a, b; Parker and Crona 2012; Drimie and Quinlan 2011). In this article, we start from this understanding; it is not possible to restrict scientists to science when they are communicating scientific information across the boundary that divides science and non-science knowledge domains, and neither is it best practice. I think the whole alert level thing is […] an attempt to better communicate with the public, media [and] help scientists convey the message. Most people put too much emphasis on that and not enough with the basic problem, which is communication between scientists and non-scientists (HVO senior scientists 4). The marble look pattern contains veins streaming and pulsating down the length of Volcano Light by Compac. They animate this surface, granting it energy, depth and chromatic richness. Organic, marble effect colours pair well with acabinet of virtually any colour. But above all, they are stand-out centrepieces on kitchen islands, where the organic patterns cascade down the edge, flowing onto the adjoining side panels. This natural theme is universally applicable to similar or contrasting colours. Material structure & composition: Parker J, Crona B (2012) On being all things to all people: boundary organizations and the contemporary research university. Soc Stud Sci 42(2):262–289 The] complicated reduction of all of these factors (risk, hazard, activity) and boiling that down to a simple number [means] inevitably if you do that, something is going to be lost. You can’t just project a ten-dimensional problem down to one dimension and expect it to retain all its complexity (AVO scientist 4).Potter SH, Scott BJ, Fearnley CJ, Leonard GS, Gregg CE (2017) Challenges and benefits of standardising early warning systems: a case study of New Zealand’s Volcanic Alert Level System. Springer, Berlin, Heidelberg, pp 1–20. https://doi.org/10.1007/11157_2017_18 Creech H, Willard T (2001) Strategic intentions: managing knowledge networks for sustainable development. IISD, Winnipeg Madden J, Murray TL, Carle WJ, Cirillo MA, Furgione LK, Trimpert MT, and Hartig L (2008) Alaska interagency operating plan for volcanic ash episodes, p 52 In practice, a VALS is a communication initiation tool, an instrument to develop coordination plans and to provide general awareness about the state of the volcano, rather than about a specific hazard. If this communication occurs regularly, then it may actually be surplus to requirements. That is, VALS can appear overly complicated given that the concept is simply to gain attention to an event and its anticipated impacts, and valuable time can be spent on deciding alert levels that might better be used to initiate the necessary communication to provide scientific information. It is through multi-valent communication outside of the VALS that producers and consumers can establish meaningful interpretations of warnings, even if they are based in different contexts. The development of VALS began in the 1980s, in response to the Mt. St. Helens eruption (USA) in particular. Between June 1980 and October 1986, this volcano continued to erupt in the form of a dome-building phase punctuated frequently by dome explosions (Swanson and Holcomb 1990). This cyclic activity allowed the newly formed Cascades Volcano Observatory (CVO) to develop accurate warnings as far as 3 weeks in advance for 19 of 21 explosions (Bailey and USGS 1983). Increasing confidence for many scientists in their ability to provide precise predictions, this high rate of accuracy provided the impetus to develop a VALS for use at CVO. In 1985, the United Nations Disaster Relief Organisation (UNDRO) published a report on ‘Volcanic Emergency Management’. It features one of the first examples of a VALS, called “stages of alert of volcanic eruption” (UNDRO 1985, p. 54). Each progressive alert level reflects increasing indicators that the volcano is about to erupt and provides an approximate period and a recommended disaster manager response. From this point on, VALS have all followed this linear progression whereby alerts rise with perceived increasing levels of danger. The UNDRO report also offers strong guidance in relation to using public announcements that have been decided prior to any emergency to limit panic in volcanic crises, emphasising the need for the public to be made aware of the arrangements for receiving information. These details vary in each place, region and country, according to the different “political and social structure of the community and the technical means available. It is therefore difficult to lay down any detailed guidelines for public information and warning” (UNDRO 1985, p. 55). The report also highlighted the importance of local context and the need to develop an idealised VALS for countries to adopt or adapt if they required. Possibly, because of the importance of local contingencies, literature on VALS since 1985 has remained limited until the 2000s, with some grey literature written by various volcano observatories, institutions and individuals.

Sometimes volcanoes can be two types. Iceland is an example of a volcano that falls into two categories. It is a spreading plate margin volcano as well as a hotspot volcano. Volcanoes in Australia Newhall CG, Punongbayan R (eds) (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines (p 1126). Philippine Institute of Volcanology and Seismology, Quezon CityVan Eaton ultimately hopes to use lightning flashes to gauge the power of volcanic eruptions remotely. "Lightning is telling us things that other geophysical monitoring techniques can't see," van Eaton told Live Science. Bigger eruptions trigger more lightning, van Eaton said. "Simply seeing that lightning is associated with an eruption tells you that there are potential aviation issues, and it informs the way you respond to a volcano," she said. The explicit aim of introducing standardised VALS, as noted above, has been not only to ‘fix’ the meaning of the information they convey but also to fix the meaning of a VALS itself. Such efforts are complicated by the fact that each VALS is understood in relation to prior learning experiences, that ‘school’ users to respond in particular embodied ways to the medium provided. One such example, recalled at both AVO and at HVO as illustrative of the role of prior experience, concerned a commercial Alaskan pilot flying from Alaska to Hawaii. The pilot, used to flying in Alaska and dealing with the aviation colour code frequently in place there, was concerned that the Kilauea volcano on the island of Hawaii was assigned an orange alert level. Based on his experience of warnings issued in Alaska, he anticipated that the volcano would be exhibiting unrest with increased potential for eruption with ash. When the pilot arrived in Hawaiian airspace, he expected some form of diversion or information (such as a Volcanic Ash Advisory) regarding Kilauea, but received nothing and landed with no problems. He later discovered that Kilauea was erupting, but emitting such a small ash plume that low-level flying was only prohibited within close proximity of the volcano. An] alert level system is a shorthand, is the vehicle, it is the excuse to get into communications and dialogue, that gives you a justification and purpose […] that provides you the entry into having a discussion with very busy people who are otherwise occupied with other duties they have (VHP manager 4). Casadevall TJ (1994) The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. J Volcanol Geotherm Res 62(1–4):301–316 Another key distinction that has developed as VALS have been designed and implemented around the world concerns two distinct institutional roles awarded to volcano observatories. In many countries, volcano observatories are classified as state or gederal services. This is the case for example in New Zealand and the USA, where such observatories are part of national research agencies required to provide a public interface (GNS and USGS respectively), in Japan and Iceland, where observatories are run from within National Meteorological Agencies, and in Mexico, where volcano observatories are run from within the Centro Nacional de Prevención de Desastres. These institutional arrangements and associated legal remits predispose the relevant observatories to interface with end users, since they are required to provide and prioritise public functions (typically of civil protection). However, in other countries, volcano observatories are situated within institutes with a predominantly scientific focus. In Ecuador, Italy and France, for example, the Instituto Geofisico, the INGV and Le Institut de Physique du Globe de Paris (IPGP) (respectively) are positioned in the science domain, which requires a primary focus on producing quality science. It is possible that institutional remits that require this more exclusive focus on scientific goals may result in VALS design and implementation less attuned to an interface function between scientific and end user communities. Papale’s ( 2017) defence of a clear division between scientific and operational functions, for example, could be interpreted in the light of this distinction, since he is based in an institute that focuses on producing scientific, rather than public service outcomes. We raise this point to note that this article draws from research conducted exclusively with USGS scientists and the associated range of USGS VALS end-users. Since the USGS is required to provide a public interface function, these research participants are likely to see the role of the volcano observatory framed in terms of direct utility serving society.

Potter SH (2014) Communicating the status of volcanic activity in New Zealand, with specific application to caldera unrest: a thesis presented in partial fulfilment of the requirements for the degree of Doctorate in Emergency Management at Massey University, Wellington. Massey University, New Zealand Various indicators of volcanic unrest can also be used in predicting eruptions. Earthquake activity around a volcano can provide valuable information. An eruption can be preceded by hundreds of small earthquakes know as earthquake swarms. Earthquakes also can indicate that magma is moving beneath a volcano. However, eruptions can occur with no perceivable change in seismic activity.

Bianco Brouille marble

Metzger P, D’Ercole R, Sierra A (1999) Political and scientific uncertainties in volcanic risk management: the yellow alert in Quito in October 1998. GeoJournal 49:213–221



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop